[BỘ 1] Bộ 10+ Bài Tập Hình Học Lớp 9 Dành Cho HSG (FULL Đáp Án)

Báo cáo sản phẩm này

Vui lòng Đăng nhập liên hệ tới tác giả này.

Liên hệ tác giả

Vui lòng Đăng nhập liên hệ tới tác giả này.

4 NGÀY HOÀN TIỀN


Tài liệu không đạt tiêu chuẩn chất lượng hoặc không đúng với mô tả sẽ được hoàn tiền trong vòng 4 ngày.

Tổng quan tài liệu

"Bài Tập Hình Học Lớp 9 Dành Cho Học Sinh Giỏi (Có Lời Giải)" là một tài liệu được thiết kế chuyên biệt để hỗ trợ học sinh lớp 9 nâng cao kỹ năng giải toán hình học. Tài liệu này tập trung vào các bài toán nâng cao, phù hợp cho các kỳ thi học sinh giỏi, đồng thời giúp củng cố kiến thức và phát triển tư duy toán học.


Nội dung tài liệu

Phần A: Lý thuyết và phương pháp giải

  1. Kiến thức trọng tâm:

    • Tính chất của các hình học phẳng: tam giác, tứ giác nội tiếp, đường tròn và mối quan hệ giữa các yếu tố hình học.
    • Ứng dụng các bất đẳng thức và các định lý cơ bản như định lý Vi-ét, định lý Pitago, và các tính chất hình học nổi bật.
  2. Phương pháp giải bài toán hình học:

    • Cách tiếp cận bài toán chứng minh hình học.
    • Phương pháp dựng hình, vẽ phụ và phân tích bài toán.

Phần B: Hệ thống bài tập

Tài liệu chứa hơn 10 bài tập nâng cao với nội dung phong phú, đa dạng. Các bài tập được phân loại thành:

  1. Bài toán về tứ giác nội tiếp và tam giác:

    • Ví dụ: Chứng minh các tứ giác nội tiếp hoặc tìm điều kiện để một hình là nội tiếp.
    • Các bài toán ứng dụng định lý Vi-ét để tìm giá trị của các yếu tố hình học.
  2. Bài toán chứng minh bất đẳng thức:

    • Áp dụng bất đẳng thức Cauchy và các tính chất hình học để giải quyết bài toán.
    • Ví dụ: Chứng minh rằng độ dài đoạn thẳng nhỏ nhất đạt được khi...
  3. Bài toán ứng dụng thực tế:

    • Bài toán liên quan đến dựng hình, tìm vị trí tối ưu và xác định các yếu tố hình học quan trọng trong thực tế.
  4. Bài tập điển hình trong các kỳ thi học sinh giỏi:

    • Các bài toán từng xuất hiện trong đề thi học sinh giỏi cấp tỉnh, thành phố.
    • Ví dụ: Chứng minh tam giác ABC đều hoặc xác định điều kiện để diện tích hình bình hành đạt cực đại.

Phần C: Lời giải chi tiết

  • Tài liệu cung cấp lời giải tỉ mỉ, dễ hiểu cho từng bài tập, giúp học sinh nắm vững phương pháp giải toán.
  • Đặc biệt, các bước giải được phân tích cụ thể, từ cách vẽ hình, xác định yếu tố đến cách kết luận bài toán.

Điểm nổi bật của tài liệu

  1. Cấu trúc rõ ràng:

    • Tài liệu được sắp xếp khoa học, từ lý thuyết đến bài tập thực hành, giúp học sinh dễ dàng theo dõi và học tập.
  2. Đa dạng bài tập:

    • Bao gồm các dạng bài thường gặp trong đề thi học sinh giỏi, từ cơ bản đến nâng cao.
  3. Phù hợp với đối tượng học sinh giỏi:

    • Tài liệu là sự lựa chọn lý tưởng cho các bạn học sinh mong muốn thử thách bản thân và nâng cao khả năng toán học.

Thêm tài liệu liên quan bởi ducanh2004bg

Những sảm phẩm tương tự

Top